Fracture Resistance and Fracture Behaviour of Monolithic Multi-Layered Translucent Zirconia Fixed Dental Prostheses with Different Placing Strategies of Connector: An in vitro Study

Purpose: To evaluate the effect of different placing strategies performed in the connector area on fracture resistance and fracture behaviour of monolithic multi-layered translucent zirconia fixed dental prostheses (FDPs).
Materials and Methods: Thirty 3-unit monolithic FDPs were produced and divided into three groups (n = 10) based on the different strategies for placing the connector area of FDPs in multi-layered zirconia blank with varying contents of yttria ranging from 4 to 5 mol%. The groups were as follows: FDPs with connectors placed in dentin layer with 4 mol% yttria content, FDPs with connectors placed in gradient layer, and FDPs with connectors placed in translucent layer with 5 mol% yttria content. A final group (n = 10) of conventional monolithic zirconia with a monolayer of yttria content (4 mol%) has been used as a control group. The specimens were artificially aged using thermocycling and pre-loading procedures and subsequently loaded to fracture using a universal testing machine. Fracture loads and fracture behaviour were analyzed using one-way ANOVA and Fisher’s exact tests and statistically evaluated (p ≤ 0.05).
Results: There were no significant differences in fracture loads among the groups based on the placing strategies of the connector area of the FDPs in the multi-layered translucent zirconia blank (p > 0.05). There was no significant difference in fracture loads between monolithic multi-layered translucent zirconia and conventional monolithic translucent zirconia materials (p > 0.05). Fracture behaviour of FDPs with connector area placed in translucent layer differed significantly compared to FDPs with connector area placed in dentin layer and FDPs in control group (p = 0.004).
Conclusion: The placing strategies of the connector used in the computer aided design and manufacturing procedures do not considerably affect fracture resistance of monolithic FDPs made of multi-layered translucent zirconia. Monolithic FDPs made of multi-layered translucent zirconia show comparable strength to FDPs made of conventional translucent zirconia, but with different fracture behaviour.

Keywords: all-ceramic restorations, computer-aided design\manufacturing, fracture load, multi-layered zirconia, Y-TZP

Introduction

Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) is the most commonly used oxide ceramic material in Restorative Dentistry. This is related to its superior fracture strength and unique toughening properties.1,2 However, owing to its poor optical properties, Y-TZP based restorations must be veneered with translucent glass-ceramic materials in many clinical situations. Although the high success rate of veneered Y-TZP restorations has been reported to be over 90%, clinical complications such as veneer chipping and connector fracture still occur.3–5 Moreover, the use of veneered Y-TZP restorations requires removing more underlying tooth substance to provide enough space for the material. For those reasons, there is a general preference for shifting toward monolithic Y-TZP restorations, with challenges in achieving esthetical requirements without compromising the overall strength.6–8

The main drawback of using Y-TZP material as a monolithic restoration is the low translucency, resulting in poor esthetics.6,9–11 Scattering of light in Y-TZP and subsequent reduction of light transmittance mainly occurs at grain boundaries, pores, and secondary phases.6,9–11 However, enhanced optical properties of this material have been achieved by modifying the microstructure, for example, through altering the yttria (Y2O3) content and applying different sintering conditions.12,13 Shorter sintering times result in smaller grain size and thus an increase of the light transmittance of the final dental zirconia.12 Furthermore, it has been shown that the change of dopant contents, such as lanthanum oxide and aluminum oxide, improved the optical properties of zirconia.14 From a material point of view, the mechanical properties of Y-TZP are negatively affected by enhancing the translucent properties of the material.15,16 The more translucent the zirconia is, the lower the fracture strength.15,16

Recently, a new multi-layered translucent zirconia material, with a natural progression of shade and translucency, has emerged in the dental market to mimic natural teeth closely. This material is indicated to produce monolithic restorations in both the anterior and posterior regions. There are two types of multi-layered translucent zirconia on the market: 1) Multi-layered zirconia with different colour saturations in the different layers but the same yttria content throughout all layers, and 2) Multi-layered zirconia with different translucency in the different layers as a result of varying yttria contents in the different layers. Thus, the strength and toughness of the layers with different yttria contents are expected to be different. During computer-aided design and manufacturing (CAD/CAM) procedures, dental technicians can use different placing strategies to place the fixed dental prosthesis (FDP) in multi-layered translucent zirconia blank before milling. Previous studies showed that the main fracture origin leading to the failure of the prostheses is located at the gingival side of the connector area, which is linked to the development of stress concentrations in the connector when different loads are applied to the FDPs.17,18 Accordingly, in practice, the fracture resistance of the FDP, especially in the connector area, might be affected depending on how the placing strategy has been performed by the dental technician during CAD/CAM procedures. It is not known, however, if the different placing strategies of the connector, during computer manufacturing of zirconia blanks, might affect the fracture resistance of the final restoration made of the new multi-layered translucent zirconia material, since the strength varies between the different layers of zirconia.

Therefore, the present study aimed to evaluate the effect of the different placing strategies performed in the connector area on fracture resistance and fracture behaviour of monolithic FDPs made of multi-layered translucent zirconia. The null hypothesis is that there is no difference in fracture resistance and fracture behaviour of the FDPs made of multi-layered translucent zirconia based on the placing strategies performed in the connector area.

Materials and Methods

Study Design

Thirty 3-unit monolithic FDPs were produced and divided into three groups (n=10) according to the different strategies for placing the connector area of the FDPs in the multi-layered translucent zirconia blank (IPS e.max ZirCAD MT Multi, Ivoclar Vivadent, Schaan, Liechtenstein) (Figure 1). The groups were as follows: FDPs produced with the connectors placed in the dentin layer with 4 mol% yttria, FDPs produced with the connectors placed in the gradient layer, and FDPs produced with the connectors placed in the translucent layer with 5 mol% yttria. A final group (n=10) of conventional monolithic zirconia with monolayer of 4 mol% yttria content has been used as a control group (IPS e.max ZirCAD, Ivoclar Vivadent, Schaan, Liechtenstein). The FDPs were cemented using compatible resin cement onto abutment models made of a polymer material (POM C glass infiltrated). The specimens were artificially aged using both thermocycling and cyclic fatigue procedures before they were loaded to fracture. Fracture loads and fracture behaviour were subsequently analyzed and evaluated statistically p ≤0.05.

Figure 1 Illustrations show different placing strategies of the connector area of the FDPs in multi-layered zirconia blank through computer-aided manufacturing software. The double-headed black arrow represents moving the FDP in translucent layer (5Y-TZP), gradient layer, and dentin layer (4Y-TZP) of the multi-layered zirconia blank before milling.

Specimen Preparation

For the preparation of the teeth, a plastic model of a mandibular jaw was used (KaVo YZ; KaVo Dental GmbH, Biberach, Germany). The preparations were made on the canine (43) and premolar (45) and were designed to provide space for Y-TZP material with a 120° chamfer and 15° convergence angle. The teeth preparations were conducted by prosthodontist. After the preparations were conducted, a full-arch impression using silicone material (President; Coltene AG, Altstätten, Switzerland) was made and poured with die stone material (Vel-Mix; Kerr Corp, Orange, CA). A master cast was produced from the die stone, and subsequently, a wax-up (1.5–3 mm) of the FDP was made by professional dental technician. The wax-up was scanned with a double-scan technique using a dental laboratory scanner (D900L; 3Shape, Copenhagen, Denmark). Data from the scanner were transferred to a computer loaded with computer-aided design (CAD) software. The design of the FDP connector was a round shape and the dimensions for all the FDP connectors were adjusted to 3 mm x 3 mm. The occlusal thickness of the retainer core was set to 1 mm, and the axial wall thickness was set to 0.8 mm with a 0.5 mm cervical margin. After the adjustments, the CAD file was sent to a milling center (Cosmodent AB, Malmö, Sweden) to produce the FDPs. The same sintering protocol for the two zirconia materials has been used following the manufacturer instructions. The CAD file was used to produce the abutment models made from a polymer material (POM-C GF25; Mekaniska AB, Simrishamn, Sweden) with a modulus of elasticity comparably close to dentin (9 GPa).

Artificial Aging, Cementation, and Load to Fracture Test

All FDPs were subjected to artificial aging, beginning with thermocycling. In a thermocycling device (THE-1100; SD Mechatronik GmbH, Feldkirchen-Westerham, Germany) containing two water baths, the FDPs underwent 10,000 thermocycles at two different temperatures, 5 and 55°C. Each cycle lasted for 60 seconds, 20 seconds in each bath and 20 seconds to complete the transfer between the baths.4,19–22 The cementation of the FDPs to the abutment models was completed using a dual-polymerized resin cement (Panavia V5; Kuraray Medical Inc., Okayama, Japan) according to the manufacturer’s recommendations. However, before cementation, the abutment models were air-abraded with 50 µm aluminum oxide using an air abrasion device (Basic Quattro IS; Renfert GmbH, Hilzingen, Germany) as well as treated with two primers (Tooth Primer, Clearfil and Ceramic Primer; Kuraray Medical Inc) following the manufacturers’ instructions. The FDPs were cemented to the abutment models with a standardized seating load of 15 N in the direction of insertion. A calibrated curing lamp (Heraeus Translux® Power Blue®, Heraeus Kulzer GmbH) was used according to the manufacturer’s recommendations to initiate the curing. Ultimately, excess cement was removed with a scalpel (AESCULAP® no. 12, Aesculap AG & Co, Tuttlingen, Germany). The specimens were stored in a humid environment at a temperature of 37°C before cyclic fatigue. The last step of artificial aging was cyclic fatigue using a pre-loading machine (MTI Engineering AB; Lund, Sweden/Pamaco AB, Malmö, Sweden). The cemented FDPs were submerged in distilled water at 10° of inclination towards the tooth axis and went through 10,000 cycles of 30–300 N at a frequency of 1 Hz. A 4 mm stainless ball was placed on the occlusal surface of the connector area between teeth 45 and 44 of the bridges to apply mechanical cyclic loads.4,19–22

After artificial aging, all FDPs were installed in a test jig at 10° inclination towards the axial direction using a universal testing machine (Instron 4465, Instron Co. Ltd, Norwood, MA, USA), (Figure 2) as was suggested in previous laboratory studies.4,19–22 The load was applied on the pontic using a specialized stainless-steel intender. Throughout loading, all the FDPs were submerged in water. The crosshead speed was set at 0.255 mm/min, and the fracture was defined as follows: visible crack, load drop or an acoustic event, whatever occurred first.4,19–22 The load at fracture was then registered.

Figure 2 Illustration of the specimen in a test jig at 10° inclination in cyclic fatigue and load to fracture tests. All specimens were submerged in water during the tests.

Fracture Behaviour Analysis

The fracture surfaces of the FDPs were analyzed by two examiners. A gross visual and microscopic assessments (Leica DFC 420, Leica Application Suite v. 3.3.1, Leica Microsystems CMS GmbH, Wetzlar, Germany) were performed to classify fracture behaviour according to the location of fracture into: fracture at the distal connector, fracture at the mesial connector, complete fracture of the FDP (involving fracture of the retainer).

Statistical Analysis

The differences in fracture resistance among the groups were analyzed using one-way ANOVA, followed by Tukey’s post hoc test (IBM SPSS Statistics 25). The differences in fracture behaviour among the groups were analyzed using Fisher’s exact test. The level of significance was set to p ≤0.05. The statistical analysis was performed by an experienced professional statistician. Power analysis was based on previous studies where differences regarding the level of significance and standard deviation were detected among the zirconia-based specimens.17,19–21

Results

Loads at fracture, levels of significance, fracture behaviour for all groups are summarized in Tables 1 and 2. There were no significant differences in fracture loads among the groups based on the different strategies for placing the connector area of the FDPs in the multi-layered zirconia blank (p >0.05). There was no significant difference (p >0.05) in fracture loads between the two different materials: monolithic multi-layered translucent zirconia and conventional monolithic translucent zirconia materials.

Table 1 Load at Fracture in Newton (N)

Table 2 Distribution of Fracture Behaviour

Three types of fracture behaviour were registered after load to fracture test: fracture at the mesial connector propagating through the pontic, fracture at the distal connector propagating through the pontic, and complete fracture involving the retainer (Figure 3). Fracture behaviour of the FDPs with connector area placed in the translucent layer (5Y-TZP) differed significantly compared to the FDPs with connector area placed in the dentin layer (4Y-TZP) and the FDPs in the control group (p ≤0.05).

Figure 3 Different types of fracture behaviour. (A) Fracture at distal connector; (B) complete fracture; (C) fracture at mesial connector.

Discussion

The null hypothesis of this study was rejected since fracture resistance of the FDPs showed no significant differences among the groups based on the different placing strategies performed in the connector area during computer manufacturing of the FDPs. However, the results showed that the different placing strategies performed in the connector area affect fracture behaviour of the three-unit FDPs.

One of the common methods to improve the translucency of dental zirconia is by changing the amount of yttria content, which results in a greater portion of the optically isotropic cubic phase without light scattering at the grain boundaries.14,15The major phenomena related with the enhanced translucency of polycrystalline zirconia-based ceramics is the reduction of birefringence, the light scattering promoted by a material with anisotropic refractive index. Tetragonal zirconia phase is birefringent, however, by increasing yttria content the precipitation of cubic zirconia, which is isotropic and do not experience birefringence, is favoured and an enhancement of the transmitted light fraction is experienced.23–25 This, on the other hand, compromises the strength and toughness of the cubic zirconia because it does not undergo stress-induced transformation.14,23–25 In the present study, the FDPs made of multi-layered translucent zirconia were divided into three groups: dentin, gradient, and translucent, based on the content of yttria ranging from 4 to 5 mol%. The groups with the connectors placed in the gradient and the translucent layers presented higher standard deviation values than the dentin and control groups. This might be explained by the fact that the gradient layer combines different microstructures of both the translucent and the dentin layers, which results in varying mechanical properties. Thus, the FDPs with the connectors placed in the layer consisting of a microstructure primarily composed of dentin (4Y-TZP) withstand higher fracture loads. The opposite applies to the FDPs with the connectors placed in the layer consisting of a mainly translucent microstructure, namely 5Y-TZP. These findings are in line with previous studies, which concluded that translucency affects the mechanical properties of zirconia.15,23–25 Although the differences of the results were not statistically significant, the numerical differences among the groups in this study, together with the findings of previous studies, confirm the effect of enhanced translucency on the mechanical properties of Y-TZP. Moreover, it is noteworthy that the limitations of the methodology used in this study might have influenced the results. For geometric reasons, it is impossible to place the whole reconstruction in one layer in the multi-layered translucent zirconia blank without infringing the minimum dimensional demands of the FDP. This means that the critical part of the connector area, the gingival portion, where the highest stress concentrations occur during loading, will probably not be entirely located in solely one layer.17,18 This technical limitation means that study findings need to be interpreted cautiously.

Many studies have investigated the adverse effects of the other methods of enhancing the optical properties of zirconia on mechanical properties. For instance, although doping of metal oxides improves the optical properties of zirconia, this may affect adversely the mechanical and biological (cytotoxic) properties of zirconia.14 Other fabrication techniques such as colouring of pre-sintered zirconia for enhancing the optical properties might be necessary in many clinical cases. Previous studies have shown the effect of such colouring techniques on the mechanical and optical properties.26,27 Nevertheless, a very recent study investigating new multi-layered translucent zirconia material showed no differences in neither microstructure nor translucency between the different layers.28 Only colour pigment composition is different between the layers within each multi-layered translucent zirconia blank. The same study revealed that lanthanum oxide doping improved the translucency without diminishing the mechanical properties of the multi-layered translucent zirconia, which is the main goal when developing high esthetical monolithic dental zirconia.

Considering fracture behaviour, this study showed that most fractures started from the connector area (mesial or distal) and propagated through the pontic during loading. This is in agreement with previous studies, which concluded that critical tensile stresses mostly develop in the gingival embrasure of the connector, result in failure of prosthesis.17,18 However, there were significantly more complete fractures (involving the retainer) in the FDPs with connector area placed in the translucent layer (5Y-TZP) compared to the FDPs of the other groups. This finding could be expected theoretically since the translucent layer has a microstructure that is less resistant to fractures, as previous studies have shown.15,23–25 It is noteworthy that fracture behaviour analysis in this study aimed to show the fracture initiation and propagation pattern under a light microscope and evaluate the ability of the test to mimic the clinical failures of dental restorations. Sophisticated fractographic analysis using a scanning electron microscope, however, might provide more details on fracture behaviour.

When conducting an in vitro study to evaluate the mechanical properties of new material, a laboratory setup simulating the oral environment and the complex forces of mastication is of great importance. One of the limitations of in vitro studies is the difficulty to choose which aging procedures would produce comparable clinical results. Previous studies have investigated the effect of artificial aging procedures, that used to mimic the clinical situation, on the longevity of ceramics. Despite that some of those studies fail to show a direct relationship between aging procedures and fracture resistance of ceramics,29 most agree that they have a significant effect on the longevity of ceramic materials.30–32 Therefore, there is no consensus regarding the effectiveness of aging tests or a specific aging protocol, but it was reasonable, however, to perform such procedures in the present study to allow for comparison of the results of other studies carried out by the same research group with this specific protocol.4,19–21 The FDPs were mounted with a 10 of inclination relative to the load direction in the load to fracture test. This angle of inclination has been used in many previous studies and was initially suggested by Yoshinari and Derand.4,19–22 However, the mechanical load to fracture test performed in a laboratory study can never completely reproduce loads and environmental influences as in the clinical situation but can still give important information. Furthermore, to obtain realistic fracture load values and compare these values with previous studies, replicating the real clinical situation concerning mechanical support is crucial.33 Therefore, all FDPs were cemented onto abutment models made of a material with a modulus of elasticity close to dentin. The cementation procedure was performed according to the manufacturer’s recommendations, and the same cement was used for all groups. Since in vitro studies have shown that thermocycling affects the bond strength of cements, all FDPs were cemented after this stage to avoid partly loose prostheses at the subsequent cyclic fatigue and load to fracture tests.31,32

Since adequate communication between the dentist and the dental technician is essential for successful dental restorations, it is a prerequisite for dentists to gain knowledge of the dental material that is required. This study has shown that the different strategies for placing the FDP in the blank during the CAD/CAM process do not have a critical effect on the mechanical properties of the translucent multi-layered zirconia FDPs. Thus, this facilitates the process of ordering for the dentist who does not have to pay regard to the technical aspects. In vitro studies, in line with the present one, are of great importance to evaluate new dental materials before using them in a clinical situation, thus safeguarding patient safety.

Conclusion

Within the limitations of this laboratory study, the following conclusions can be drawn: the placing strategies of the connector used in the computer aided design and manufacturing procedures do not considerably affect fracture resistance of monolithic FDPs made of multi-layered translucent zirconia. Monolithic FDPs made of multi-layered translucent zirconia show comparable strength to FDPs made of conventional translucent zirconia, but with different fracture behaviour.

Dental Impressions: The Digital Alternative

Dental impressions are defined as “a negative imprint of an oral structure used to produce a positive replica of the structure to be used as a permanent record or in the production of a dental restoration or prosthesis.”1

The concept of taking dental impressions to create dental models was first introduced in the mid-18th century when Phillip Pfaff, dentist to Frederick the Great of Prussia, described the technique of pouring plaster of Paris into a beeswax impression.2

While our materials have certainly evolved over the course of the last 260 years, we continue to follow a similar workflow in our attempt to create an accurate analog representation of the oral environment. This conversion process presents many challenges for practicing clinicians that are related to impression retake cost, time, patient comfort and frustration when errors lead to an ill-fitting final restoration. It is appropriate then to pose the question, why is the most critically important step in what we do in restorative dentistry, which is to transfer the data from the patient (dental impression) to the laboratory (gypsum model), continued to be captured in an analog manner when we have a viable digital alternative?

This analog dental impression workflow also creates complications for our dental laboratory partners that are perhaps best illustrated by a 2015 survey in which 47 percent of the survey respondents ranked dentists’ impression-taking skills as their number one client related challenge.3 The results of this survey are supported by an often cited 2005 article in the Journal of Prosthetic Dentistry which concluded that 89.1 percent of dental impressions sent to a dental laboratory had at least one or more observable, critical errors.4

Regardless of whether one chooses to replicate an oral structure digitally or in a more conventional manner, paying attention to the fundamentals of preparation design, tissue management and appropriate isolation is paramount. However, digital impressions address many of the concerns related to retake cost, time, patient comfort5 and, due to their accuracy,6,7 helps to reduce frustration when delivering the final restoration.

I am so proud to say that we are the first dental school in North America to have secured these recently introduced intraoral scanners for use by our students in the pre-doctoral clinics. I view these units as game changers that offer distinct advantages over conventional impressions, and with many intraoral scanner options available, there is no need to wait to join the early adopters as you can easily find one that meets your individual practice goals. Implementing this contemporary approach in capturing “positive” images of oral structures will certainly afford you the opportunity to improve your clinical outcomes while showcasing your interest and commitment to providing-state-of-the-art dentistry to your patients.

By Gary L. Stafford
Marquette University
Published version.WDA Journal,Vol. 93, No. 1 (January-February 2017): 17-18.

Publisher link. ©2017 Wisconsin Dental Association. Used with permission.

Zircon Lab is America’s leading dental lab. We are partnered with dental offices nationwide and are consistently growing. As America’s highest quality dental lab with the most competitive pricing, the highest caliber of product, expert craftsmanship, and fastest delivery, we set the dental industry standard. After choosing Zircon Lab to be your dental lab of choice, you can trust our dental product will be unmatched by any competitors.

Dental Work Made In China Might Contain Lead

By ROBERTA BASKIN and SANDY BERGO

When Faye Lewis became concerned about her painful new bridgework, she had it checked out and received disturbing news: Her bridge was manufactured in China and tainted with lead. More dentists are using crowns and bridges made in China. According to the United States Customs Office, the number of dental work products coming into the United States from China has doubled in the last year. An investigation by ABC News affiliate WJLA-TV found that at least some of those dental products contain lead.

Lewis initially went to have a chipped tooth fixed, but her resulting bridgework fit so poorly and painfully, she couldn’t chew her food. The 73-year-old told her dentist what she wanted to do was chew out whoever built her bridge. According to Lewis, her dentist replied, “That will be a little hard to do because they’re in China.” As a grandmother, Lewis was aware of news reports about the recall of lead-tainted toys from China. Lead accumulates in the body and can affect kidneys, eyes, heart, the immune system, and cognitive function. So Lewis sent her dental work to a lab for testing. The results showed that it did indeed contain lead.

Ricki Braswell, co-executive director of the National Association of Dental Laboratories, said there is little regulation regarding dental work. “Because you have an unregulated industry, you don’t have standards,” Braswell said. “You don’t have standards in the domestic industry. You certainly don’t have standards in the foreign industry.”

Dental Work – Don’t Ask, Don’t Tell

Tony Prestipino, who owns Artifex dental lab in Virginia, ordered ten crowns from three dental labs in China on behalf of WJLA. Crowns from China sell for $30 to $50 to dentists, who then can charge up to $1,200 to patients who don’t know the crowns were made in China. A Chinese lab representative told Prestipino over the phone, “We follow this military ‘don’t ask, don’t tell’ policy.” Within five days, the crowns arrived. “The first thing I see is that this is a horrible color and a horrible shape,” Prestipino said. Those crowns had problems similar to Lewis’. They didn’t match the prescription and never would fit properly. When that happens, Prestipino said, “bacteria seeps right into it. You will end up needing a root canal.” If Lewis’ bridge hadn’t fit so poorly, she never would have had it removed or tested for toxic materials. Next, WJLA had the China-made crowns tested for lead at NSL Analytical in Cleveland. Using a sophisticated process that takes days to complete, the lab did not find lead in any of the crowns’ metal portion. But in every case, lead contamination was discovered in the crown’s porcelain parts at some very high levels. “We never expected to see lead in teeth,” said NSL president Larry Somrack. In the crowns tested, the lead levels were as high as 490 parts per million. That’s five times higher than the 90 ppm a Congressional committee wants the U.S. to set for toys. Faye Lewis believes that money is behind the increased use of dental work from China. “It’s a cost factor. It’s the big dollar,” she said.

ADA Conducting Investigation

The Centers for Disease Control and Prevention says it does not believe the lead levels found pose an immediate health risk and doesn’t recommend people delay dental work or have prior work redone. Meanwhile, the American Dental Association is investigating of its own. The ADA plans to analyze up to 100 crowns blindly; about 50 percent will be from the U.S. and the other half from foreign countries. Cliff Carey, an analytical chemist with the ADA, says the organization hopes to finish the study within a year and provide the CDC results. In the testing conducted so far, Carey said that no lead was found in the crowns. The ADA is testing porcelain powders and has found traces of lead, but in minimal amounts, he said. The ADA encourages patients to discuss any concerns about the safety of their dental crowns or other prostheses with their dentists and will continue to share information on this issue.

Know What Goes In Your Patient’s Mouth

If your Dentist is using Zircon Lab located in Lenexa, KS for your crown and bridge dental work, then you are guaranteed that your Dentist has chosen a Certified Dental Laboratory to fabricate all of your dental restorations. The National Board of Certification awards its certification only to laboratories that demonstrate adherence to the highest standards. Your dental restoration is always custom designed and handmade in the USA by highly trained and experienced technicians. We use only the finest dental materials available in the fabrication process. Have your Dentist contact Zircon Lab today. 

Zircon Lab with Border_White

Choose The Right Dental Lab, The First Time

    Zircon Lab, LLC specializes in high end Zirconia (Bruxer), Aesthetic High Translucent Full Zirconia Crowns for Anteriors, e.max, and implants. All of our restorations are 100% made in the USA and we are the only dental lab to have an unconditional, 100% lifetime warranty.

Contact Info

8060 Reeder St. | Overland Park, KS 66214

+1 888.880.3383
contact@zirconlab.com

Monday - Friday: 8:00 am - 5:00 pm CST
Saturday & Sunday: Closed

Copyright 2023 Zircon Lab, LLC ©  All Rights Reserved